

Smart Growth Has a Wide Range of Environmental, Personal, and Societal Benefits

- Smart growth reduces the loss of wild lands or agricultural lands, and reducing endangered species conflicts cuts the amount of paved surfaces, reducing water pollution.
- By far the largest and most quantifiable benefit of smart growth development is reductions in the need to drive.
 - Reduced driving also has multiple benefits
 - In Southern California, reduced driving cuts air pollution

2

Some Benefits of Smart Growth Can be Quantified

- Reduced personal transportation expenditures
 - Transportation is the second largest household expenditure at 18%.
- Enhanced equity: better access for all segments of the population.
- - Suburban mothers spend 17 full days a year behind the wheel, more than the average spends dressing, bathing, and feeding a child.
- Reductions in driving reduce air pollution, including greenhouse gas pollution
- ${\scriptstyle {\begin{subarray}{c} {\ensuremath{\mathbb{Z}}} \end{subarray}}}$ Smart growth can reduce traffic congestion.

Quantifying the Smartness of Growth

- Recent research allows us to calculate how much people drive as a function of community characteristics.
- Efficient cities and efficient neighborhoods cause people to demand less automobile ownership and use, controlling for income.
- More efficient cities could cut smog in Southern California significantly.

4

Some Smart Growth Benefits Are Less Measurable

- Mixed use neighborhoods increase livability.
- Mixed income neighborhoods provide the benefits of diversity.
- Smart growth neighborhoods have access to recreational areas and open space.

The Concept of Efficient Cities is New

- Before 1973, it was easy to explain growth in vehicle miles traveled (VMT) by cars;
 - Cars were newly available.
 - Income was rising.
 - Costs of cars were decreasing.
 - Highway systems were growing.
- Little work was done comparing VMT Levels between different cities or nations.

5

3

The Concept of Efficient cities is New

- Unabated growth of VMT After 1973 is harder to explain.
- ∠ Cost of driving no longer dropping.

7

\$10,000 \$5,000

9

Median Household Income vs. Time \$45,000 \$40,000 \$30,000 \$33,470 \$20,000 \$15,000 \$15,000 \$15,000

1982 1986

1990 1994

1974 1978

Location Efficiency

- Density (housing units per acre or per hectare) is a key explanatory variable.

10

Location Efficiency: Developing Scientifically Robust Relationships I

- ∠ Unit of analysis was a neighborhood
 - The metropolitan areas had 500 to 3,000 neighborhoods.
- Dependent variables: automobile ownership per household and vehicle miles traveled (VMT) per automobile.

Location Efficiency: Developing Scientifically Robust Relationships II

- - Density (housing units per acre)
 - Public transportation availability (buses per hour within walking distance).
 - Neighborhood jobs/services: number of retail businesses within walking distance.
 - Access to jobs.
 - Pedestrian and bicycle friendliness.
 - Income.
 - Household size.

13

Location Efficiency: Study Results

- - R² for auto ownership equation exceeds 80%-90% for some cities.
- ∠ 4 variables highly significant:
 - Density
 - Transit
 - Income
 - Household size
- ∠ 2 variables modestly significant:
 - Pedestrian/bicycle friendliness
 - Proximity to jobs

14

Location Efficiency: Interpretation of Study Results

- Proximity to jobs had only modest statistical significance
 - Proximity to jobs reduced miles driven per car, but not car ownership, resulting in very modest improvements in regional air emissions.
 - Proximity to jobs was defined as the number of jobs within one half hour commuting distance.
 - Thus, there is little or no evidence that setbacks around polluting industrial facilities will increase driving.

Significance of Location Efficiency Results I

- ∠ Urban design choices made in the U.S. affect VMT by 3:1
 - This increases to at least 5:1 for infill development.
- ${\scriptstyle {\begin{subarray}{c} \ensuremath{\varkappa}}}$ Higher densities are most important.
 - The most significant variable of all was the number of residential units per residential acre. Putting some acres off-limits to development will not affect this variable, and thus will not conflict with smart growth objectives.
- Transit access is more important than previously believed:
 - 1 passenger-mile on transit may reduce VMT by 4 to 8.
 - Better transit can reduce traffic congestion by a lot.

23

Significance of Location Efficiency Results II

- Transit access is defined as the number of buses or rail vehicles per hour within walking distance of a home.
 - Siting transit stations in highway rights of way reduces drastically the number of households that can live within walking distance of the transit stop.
 - For this smart growth reason, major transit rights of way should be at least one half mile from a freeway.
 - This is consistent with the proposal to require setbacks from major highways.

Significance of Location Efficiency Results III

- ∠ Lower VMT reduces consumer costs:
 - Cars are almost 18% of household expenditures in the U.S.
- Lower VMT reduces the need to invest in highways.
- Effectiveness of transit alters the tradeoff between railroads, buses, and highways.
 - Transit can be far more cost effective due to reduction in passenger-miles.

25

Smart Growth Issues Not Addressed by Location Efficiency

- Since mixed use can most rigorously be justified as an amenity rather than a way to reduce traffic, separating polluting industrial uses from residential enhances mixed-use goals.
 - Some smart growth model developments intentionally place industrial
 and trucking related facilities near the outskirts of the development
 along the freeway exits, while placing heavy commercial and
 residential development around a transit station located away from
 the highway.
 - There is little or no evidence that setbacks around industrial facilities could increase driving.
 - Siting development near freeways may increase driving.

26

Research Ideas

- Location of businesses may also affect VMT.
 - Does clustering uses in a metropolitan or regional downtown reduce driving?
 - Is locating businesses close to transit access more important than locating homes near transit?
- - Impact of free or paid parking.
 - Impact of gasoline prices and taxes/subsidies for auto ownership.
- Do results from large metropolitan areas apply to small towns as well?

27

Smart Growth Can Be Smarter

- No need for "smart development" or affordable housing to put residents in harm's way.
- Homes that are too close to large pollution sources expose residents to air toxics
 Residents pay the price in increased health care \$ & diminished quality of life.

28

Setbacks Should Be Standard

- Designating setbacks between pollution sources and homes does NOT constrict development.
- In many cases a one block radius around a pollution source can be a sufficient setback, allowing for commercial development or open space.
- Residential design elements can often take care of setback requirements: Access roads, landscaping, etc.

